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thermal conductivity of dioxide components of inert matrix fuel
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Abstract

Based on a simplified model of the phonon spectrum, on the statistical thermodynamics, and on the generalised
Klemens model for thermal conductivity, some useful relationships bounding the specific heat capacity, the thermal expan-
sion coefficient, the bulk modulus and the thermal conductivity of dioxides, often used as components in inert matrix fuel,
were deduced in a quasi-harmonic approximation. The developed models were first verified with urania UO2, then applied
for prediction of the isobaric specific heat, the isobaric thermal expansion coefficient, and the thermal conductivity of ThO2

and of one inert matrix material: ZrO2. The similarity principle was used in the cases where the input data were missing.
The obtained results were compared with the available experimental data, and satisfactory agreement was demonstrated
in the temperature range of 30–1600 K. In most of the cases the predicted values were within the region of the dispersion of
the experimental data. The largest difference was observed for the thermal conductivity of ZrO2 at high temperatures,
which could be explained by unaccounted photon contribution.
� 2006 Elsevier B.V. All rights reserved.

PACS: 65.40.Ba; 65.40.De; 66.70.+f
1. Introduction

Modelling of thermal and mechanical properties
of innovative fuels with matrices composed of low
fissile or inert oxides is a problem of considerable
importance in the design of new generation reactors.
In the literature, these data are scarce and often
show a wide spread because of the difficulties related
to the measurement. Different sophisticated tech-
niques have been used by different teams for the esti-
mation of the thermomechanical properties of the
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actinide oxides and oxide matrices, e.g. [1–3]. These
techniques, however, are difficult to implement in
the fuel performance and design codes. On the other
hand, simple empirical expressions often used in the
engineering practice are not appropriate for predic-
tion of new material properties and even can lead to
completely erroneous data at large extrapolation. In
many cases, a combined simplified physical model-
ling of a set of properties allow to deduce a missing
property using the available data for similar
materials.

In the present article, this approach is applied to
two components of oxide IMF: ThO2, and ZrO2.
The next chapter gives a brief reminder about the
equation of state (EOS) and its use for calculation
.
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of the thermophysical properties of solids. A simpli-
fied model of the phonon spectrum used in EOS is
proposed in the third section. In the fourth section,
the relationships for the specific heat, the bulk mod-
ulus, and the coefficient of thermal expansion (CTE)
of the considered oxide systems are deduced, aiming
at their possible implementation into fuel perfor-
mance codes. The formula for thermal conductivity
based on these results and on the approach of
Klemens is presented in the fifth chapter. At the
end, the results of the model validation with UO2

data and its application for prediction of the
isobaric specific heat, the isobaric thermal expan-
sion coefficient and the thermal conductivity of
ThO2 and of one inert matrix material – ZrO2 –
are presented and compared with the experimental
data found in the literature.

2. Equation of state and relations between thermal

and mechanical properties

The equation of state (EOS) is a key function for
the determination of the properties of solids. The
Helmholtz free energy F = F(V,T), presented as a
function of volume (V) and temperature (T), is often
used as a caloric EOS. The main thermodynamic
(TD) parameters – the isothermal bulk modulus
(BT), the isobaric volumetric CTE (ap), the isochoric
and isobaric heat capacities (CV and Cp) – can be
deduced from free energy F as follows [4]:
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CpðT ; V Þ ¼ CV ðT ; V Þ þ a2
pðT ; V Þ � BT ðT ; V Þ � V � T .

ð4Þ

The microscopic statistical approach, used for the
EOS deduction, considers a solid as a ‘special box’
filled with a gas of quasi-particles representing atom
vibrations (phonons) and electronic excitations. The
Helmholtz free energy of this system is a sum of the
solid energy at T = 0K(E0), the contributions of
phonons (Fph), and the electronic excitations (Fel):

F ðV ; T Þ ¼ E0ðV Þ þ F phðV ; T Þ þ F elðV ; T Þ. ð5Þ
In the quasi-harmonic approximation, the tempera-
ture dependent part of the phonon free energy of the
ideal solid is [5]:

F phðV ; T Þ ¼ 3N at � kB � T �
X

i

Z xmax i

x0i

ln 1� e
��h�xðV Þ

kBT

� �
� fiðxðV ÞÞ � dx; ð6Þ

where kB and �h are the Boltzmann and Planck con-
stants, respectively; Nat – number of atoms in the
volume V; x – phonon angular frequency; f(x)-pho-
non density-of-states function (DOS); i is the index
of the phonon branch.

In the range of temperatures of interest
(T < 1600 K), the temperature dependent part of
the electronic component of the Helmholtz potential
(Fel) for the oxides of interest can either be
neglected, or determined by the excitations of the
unpaired localised electrons [6]:

F elðV ; T Þ ¼ �kB � T � ln
X

j

gj � exp
�EejðV Þ

kB � T

� �
;

ð7Þ
where Eej – electron excitation energy at the jth le-
vel; gj – degeneracy of the jth level.

In order to construct the EOS described by Eq.
(5)–(7), the spectra of phonons and electronic exci-
tations for the considered solids have to be known.

3. Dispersion function and phonon spectrum

The phonon spectrum of any isotropic solid
consists of three acoustic translational vibration
branches (one with the longitudinal polarisation –
LA, and two with the transverse polarisation –
TA1 and TA2) and 3Ncell – 3 internal optical
branches (where Ncell is the number of atoms in the
primitive crystal cell). Taking into account the diffi-
culties in determination of the phonon spectrum and
complexity of the spectrum itself, simplified models
are usually used in practice to estimate material
properties. The application of the most known
Debye model is limited to solids with one atom in
the primitive cell when optic modes are absent. A
simple possibility to take into account the optical
phonons is to describe them with the Einstein model
where the vibrations of all atoms have the same fre-
quency. However, in many cases it is far from the
reality and can also lead to incorrect results for
solids with complex unit cells where the optical
phonons are distributed in a large frequency region.

In this work, we propose to use for the consid-
ered dioxides a model of the phonon spectrum
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where each acoustic branch is represented by the
Debye type DOS-function and the optic branches
are condensed into one longitudinal and two trans-
verse branches described by using the well-known
stepwise function Sign(x). In this case, the norma-
lised to unity phonon DOS-function can be
presented in the following form:
fphðxÞ ¼
1

3N cell

�
X3

i¼1

x2 � SignðxiA � xÞ
x3

iA

þ 3 � ðN cell � 1Þ �
X6

i¼4

Signðx� xiO minÞ � Signðx� xiO maxÞ
ðxiO max � xiO minÞ

 !
. ð8Þ
The minimum frequency of the acoustic branches is
zero; the maximum frequencies can be found from
the dispersion relations: xAi = kmax Æ ui = p Æ ui/a

0,
where ui is the sound velocity (determined by the
elastic constant); i – index of polarisation (longitudi-
nal or transverse); kmax = p/a 0 is the maximum pho-
non wave-vector determined by the Bragg’s
limitation; a 0 – the distance between the centres of
the neighbour primitive cells.

The maximum and minimum frequencies for the
optic branches cannot be calculated in this model.
They should be found separately. For some of the
considered oxides these frequencies are well known
(e.g. for UO2 [7]), for others they can be estimated
using the similarity principle or simplified lattice
dynamics models.

The proposed model gives a more realistic
description of the total phonon spectrum than
one-frequency Debye model or the combined
Debye–Einstein approach. It has already been
applied to actinide dioxides and allowed to obtain
rather good results in a wide temperature range [8].
4. Heat capacity and thermal expansion

On the basis of the phonon spectrum (8) and the
energy levels of electron excitations, one can con-
struct the components (6) and (7) of the EOS for
the considered system and then deduce formulae
for heat capacity and CTE from (2)–(4). The iso-
choric heat capacity can be expressed as follows:
CV ¼
kB � N at

N cell

�
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.

The characteristic temperatures hi � �h � xi=kB and
hej � Eej/kB were introduced in formula (9) in the
place of the phonon minimum and maximum fre-
quencies and of the electron excitation energies,
respectively, and also the 2nd kind Debye integral
normalised to unity:
D0nðyÞ ¼ n � y�n �
Z y

0

xnþ1 � expðxÞ � ðexpðxÞ � 1Þ�2dx.

The thermal expansion of solids is determined by
anharmonic interactions between their atoms. The
lattice anharmonicity leads to the volume depen-
dence of the phonon frequencies, which is explicitly
described by the Grüneisen parameters of the
phonon branches cGi � � o(ln hxi(V)i)/o(ln V) =
� o(lnhi(V))/o(ln V). Assuming that the spectrum
of electronic excitations is independent of tempera-
ture and that the Grüneisen parameters are constant
and the same in all the modes (i.e. cGi = cG), one can
obtain from (2) for the considered oxide systems the
well-known relationship for the isobaric volumetric
CTE [9]:

apðV ; T Þ ¼
cG � CV ðV ; T Þ
BT ðT Þ � V ðT Þ

. ð10Þ

Then the isobaric heat capacity Cp can be calculated
with Eq. (4) presented in the following form:

CpðT ; V Þ ¼ CV ðT ; V Þ � 1þ c2
G � T � C

ðV ;T Þ
V

BT ðT Þ � V ðT Þ

 !
. ð11Þ
5. Thermal conductivity

It is well known that thermal conductivity in the
oxides of interest is mostly determined by the
phonon mechanism. Other mechanisms (charge
carriers, photons, vacancies) give only few percent
x � D01ðhi max=T Þ � hi min � D01ðhi min=T Þ
hi max � hi min

�#

ð9Þ
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contribution at sufficiently high temperatures, there-
fore they will be disregarded in this article. The pho-
non contribution to thermal conductivity (j) in
solids can be described using the Callaway type
expression based on kinetic theory and the free path
length (l) approach [10]:

jphðT Þ ¼
1

3

X
i

Z xi max

xi min

ciðxÞ � uiðxÞ � liðxÞ � dx;

ð12Þ
where ci(x) is the heat capacity of the ith branch
phonons with the frequencies from x to x + dx
containing in the unit volume of the given solid, ui

(x) – the phonon group velocity, li(x) the phonon
free path length determined by interactions with
static and dynamic defects.

Expression (12) can be presented in another form
as a product of the lower classic limit of the thermal
conductivity (j0) and a sum of the dimensionless
transport integrals Ii(hi/T) of the phonons branches:

jphðT Þ ¼ ðkB � nat � l0 � u0Þ

�
X3N cell

i

Z hi=T

0

UiðxÞ � KiðxÞ � x2 � ex � fiðxÞ � dx

ðex � 1Þ2

¼ j0 �
X3N cell

i

I iðhi=T Þ; ð13Þ

where nat is the number of atoms per unit volume; l0
is the minimum phonon path length determined by
the Bragg’s condition; u0 – the mean sound velocity;
Ui(x) � ui(x)/u0 is the relative phonon velocity and
Ki(x) � li(x)/l0 is the relative phonon path length.

The Debye spectrum and the thermal conductiv-
ity model based on formula (12) has already been
used by the authors in [11] for the modelling of
self-irradiation effects. In the present article, we
neglect the contribution of N-processes (so limiting
the modelling to defect materials), but use the
advanced model of the phonon spectrum. The effect
of defects on the phonon spectrum is still disre-
garded. In the considered model of the phonon
spectrum (8) described above, the acoustic phonon
velocities are constant and those of the optic pho-
nons are zero. In this case, substitution of spectrum
(8) into (13) allows obtaining:
jphðT Þ ¼
j0

3N cell

� uAL

u0

� T
hAL

� �3

�
Z hAL=T

0

KALðxÞ � x4 � ex � d
ðex � 1Þ2

 

At K(x) = 1, the phonon path length is the smallest
allowed, and the expression (13) yields the lowest
limit of the thermal conductivity:

jphðT Þ ¼
j0

3N cell

� uAL

u0

� D03ðhAL=T Þ þ 2uAT

u0

� D03ðhAT=T Þ
� �

.

ð15Þ
In order to evaluate correctly the lattice thermal
conductivity, three type of interactions: the pho-
non–phonon interactions (N-processes and U-pro-
cesses) and the phonon scattering by different
static defects (D) should normally be considered
[11,12]. Assuming their independence, the resulting
inverse phonon free path length can be presented
as a sum:

K�1
i ðxÞ ¼

X
k

K�1
Di ðxÞ þ K�1

ph ðxÞ. ð16Þ

Two types of static defects are of major importance
in the considered systems: point defects and crystal-
lite boundaries. The phonon free path length limited
by the scattering on the crystallite boundaries can be
described with the Casimir formula [13] through the
effective crystallite size dDb eff:

KDb ¼ dDb eff=l0. ð17Þ

The phonon interactions with point defects are usu-
ally estimated with the formula obtained by Kle-
mens [14], which can also be presented as follows:

KDp ¼
lDpðiÞðxÞ

l0

¼ Apoint �
xi max

x

� �4

ð18Þ

with the dimensionless constant Apoint depending on
the lattice constant, elastic and thermal properties
[15]. It is essential for the Klemens formula that
point defects are isolated, immobile and the size of
a sphere associated with a defect is small compared
to the phonon wavelength. In many real cases,
however, considering high temperature thermal
conductivity the first two conditions are not for-
mally satisfied and therefore the point defects
microscopic cross-sections are overestimated. The
xþ 2uAT

u0

� T
hAT

� �3

�
Z hAT=T

0

KATðxÞ � x4 � ex � dx

ðex � 1Þ2

!
.

ð14Þ
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effective characteristic size of crystallites (dDb eff) and
the point defect coefficient (Apoint) can be found
with the help of the microscopic analysis of the stud-
ied samples or estimated from the low temperature
thermal conductivity.

As it has been mentioned above, we assume here
that the contribution of N-processes can be
neglected in comparison with other scattering mech-
anisms (U-processes and static defects) in the mate-
rials of interest. The phonon free path length related
to the U-type phonon–phonon scattering (lU(i))
decreases with temperature and with the phonon
frequency. Following the analysis of Slack [12], at
high temperatures it is proportional to �T�1x�2.
Moreover, the phonon path should be inversely
proportional to the mean number of the phonons
excited at the given temperature which is deter-
mined by the Bose function. Then one can expect
for the whole temperature range:

Kph �
lUðxÞ

l0

¼ AU � ðe
�h=bUT � 1Þ � h

2
i

T 2
� x

2
i max

x2
; ð19Þ

where AU and bU are dimensionless constants deter-
mined by the solid structure and properties. The
constant b takes into account that not all phonons
can participate in U-processes (bU = 2–8 in most
of practical cases; below we use bU = 4 as the first
guess). The expression for the thermal conductivity,
limited by phonon–phonon scattering processes
described by (19), can be presented as follows:

jph UðT Þ ¼
j0 �AU � ðe�h=bUT � 1Þ

3N cell

� uAL

u0

�D01ðhAL=T Þ þ 2 � uAT

u0

�D01ðhAT=T Þ
� �

.

ð20Þ
Table 1
Some parameters of the considered oxides at STP used as input

UO2

Molecular mass g mol�1 270.03
Crystal structure FCC fluorite type
Lattice parameter 10�9 m 0.5470

Theoretical density kg m�3 10956
Lattice volume 10�30 m3 163.7
Young modulus 1011 Pa 2.33
Poisson’s ratio – 0.32
xAL/xOL min/xOL max – 1.0/1.0/3.6
xAT/xOT min/xOT max – 1.0/1.9/3.9
Grunëisen parameter – 1.9
The coefficient AU can be determined from the high
temperature approximation of (20) using the rela-
tionship for the intrinsic thermal conductivity of a
Debye type solid at high temperatures, which was
first deduced by Leibfried and Schlömann [16] and
then corrected by Julian [17] and by Slack [12]. It
allows obtaining the following expression:

AU ¼ 5:84 � 10�23 kB

2p�h

� �3

�M � N
1=3
cell � �h2

n1=3
at � j0 � c2

G

; ð21Þ

where Mat is the mean mass number.
The relationships (19) and (21) are rough approx-

imations that valid in the case where the contribu-
tion of N-processes is small. They can give rather
satisfactory results within a group of the similar
materials in many cases, but sometimes a fine fitting
of the scattering coefficients is still needed. The
U-processes parameter bU remains free and should
be chosen in every case to assure a better agreement
at high temperatures.
6. Results of modelling

The calculation of the heat capacity, the thermal
expansion coefficient, and the thermal conductivity
of the materials of interest with the above formulae
requires knowledge of their density, elastic moduli,
Gruneisen parameter, crystal structure, lattice
parameters, frequency limits of the phonon spectra
branches, spectrum of the electronic excitations,
and information about point defects and crystallite
sizes. For the oxides considered in this article, the
values of input parameters at standard temperature
and pressure (STP) used in the calculations are
presented in Table 1.
ThO2 ZrO2

264.04 123.22
FCC fluorite type Monoclinic P21/c
0.5597 0.5143

0.5194
0.5298 (b = 99.22�)

10002 5860
175.3 139.7
2.61 2.10
0.28 (0.33)
1.0/1.0/3.6 1.0/1.0/3.6
1.0/1.9/3.9 1.0/1.5/3.0
1.8 1.3
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Fig. 1. Calculated with the parameters presented in Table 1 and
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isobaric volumetric thermal expansion coefficient (b) and of the
thermal conductivity (c) of UO2 (all values are normalised to
100% TD).
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6.1. Urania

For benchmarking of the model, the UO2 case
has been analysed first. As input information we
used the lattice parameter, the elastic constants
and the frequency limits for the optical branches
cited in [7]. The temperature dependence of the bulk
elastic modulus was taken from [18], and the Grün-
eisen parameter of 1.9 was recommended in [19] as
the best estimate value for UO2. The localised elec-
tron excitation levels were taken from [20]: two
levels at 1246 cm�1, three at 1372 cm�1 and one at
1425.5 cm�1.

Fig. 1(a)–(c) show, respectively, the calculated
values of the isobaric specific heat, the isobaric
CTE, and the thermal conductivity for UO2 of the-
oretical density as a function of temperature in the
region of 30–2000 K. The recommended and some
experimental data from the literature [21–31] are
also plotted there. From Fig. 1(a) it can be seen that
the calculated isobaric specific heat is in a good
agreement with the experimental data overall the
considered temperature range. For the isobaric ther-
mal expansion coefficient, this agreement is less
good (Fig. 1(b)). The remarkable underestimation
is observed at T > 1700 K, which can be an indica-
tion of a supplementary anharmonic or defect con-
tribution that was not taken into account in the
model. The difference in the region of 300–500 K
could be explained by an error of the CTE extrac-
tion from the experimental data on the thermal
strain. The UO2 thermal conductivity is described
by the model rather well in the range of 300–
2000 K (Fig. 1(c)). Unfortunately, we did not find
experimental data on the UO2 thermal conductivity
and CTE at lower temperatures (<300 K).

6.2. Thoria

The input elastic parameters for ThO2 were
selected from non-exhaustive published data on
polycrystalline thorium dioxide [32,33]. The value
cG = 1.8 was chosen for the Grunëisen parameter,
taking into account a large dispersion (from 1.5 to
2.0) in its recommended values. We did not found
in literature the characteristic optic frequencies of
ThO2, therefore the frequencies ratio’s of UO2 were
used in these calculations (see Table 1). In contrast
to UO2 and to some other actinides, the localised
electronic excitations are absent in ThO2. The
results of calculations and some available experi-
mental results [21,22,33–40] are presented in
Fig. 2. Similar to the case of UO2, a good agreement
between the calculated and recommended values
has been obtained for the isobaric specific heat over
the considered temperature region from 30 to
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2000 K (Fig. 2(a)). The coefficient of thermal
expansion of ThO2 is also well described by the
model – the calculated values are in the limits of
0

100

200

300

400

0 500 1000 1500 2000
Temperature (K)

Is
ob

ar
ic

 s
pe

ci
fi

c 
he

at
 (

J 
kg

 -1
 K

 -1
)

D.W.Osborn, E.F. Westrum [33]

J.C. Southard [34]

calculated with Eq.(11)

ThO2

0

1

2

3

4

5

0 500 1000 1500 2000
Temperature (K)

Is
ob

ar
ic

 v
ol

um
et

ri
c 

C
T

E
 x

 1
0 5  (

K
 -1

)

T. Yamashita et al. [21]

J. Belle, R.M. Berman [35]

J.B. Wachtman [36]

calculated with Eq.(10)

ThO2

0

4

8

12

16

20

24

0 500 1000 1500 2000
Temperature (K)

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

 m
 -1
 K

 -1
)

J. Belle, R.M. Berman [35]

Y.S. Touloukian et al. [38]

C.G.S. Pillai, P. Raj [39]

K.Bakker et al. [40]

calculated with Eq.(14),(16)-(19)

ThO2

a

b

c

Fig. 2. Calculated with the parameters presented in Table 1 and
experimental values of the isobaric specific heat (a), of the
isobaric volumetric thermal expansion coefficient (b) and of the
thermal conductivity (c) of ThO2 (all values are normalised to
100% TD).
the differences between the different experimental
data up to 1600 K (Fig. 2(b)). The available experi-
mental data on the thoria thermal conductivity also
suffer from a remarkable dispersion. The calculated
curve lies well within the region of the experimental
points (Fig. 2(c)).

6.3. Zirconia

In spite of a lot of studies performed with zirco-
nia, only a few publications exist that give the ther-
mophysical and mechanical parameters of the pure
monoclinic ZrO2 over a large temperature range.
In these calculations, the data presented in
[22,37,38,41–53] and the isotropic model of ZrO2

crystal with averaged parameters were used. The
same optic frequency ratios were used as above
but the gap between the acoustic and optic branches
was reduced taking into account a lower M/O mass
ratio in ZrO2 compared to UO2. The input parame-
ters are given in Table 1. From Fig. 3(a) one can see
that the isobaric specific heat is rather satisfactory
described by the model up to the temperatures close
to the temperature range where pure zirconia exhib-
its a monoclinic–tetragonal structural phase trans-
formation (1440–1470 K [42,43]). The available
data on the thermal expansion show a large disper-
sion between the values and in the temperature
dependence [37,41,47,48,50]. The calculated CTE
line passes just between them (Fig. 3(b)). It is rather
close to the results obtained by Fehrenbacher and
Jacobson [41]. The more consistent experimental
data on the thermal conductivity of the pure mono-
clinic ZrO2 were published in [43,49,53]. The
detailed analysis of the ZrO2 and YSZ thermal con-
ductivity has recently been performed by Degueldre
et al. [44], who mentioned a large uncertainty in the
calculations of the coefficient (21) related to U-pro-
cesses. In the current calculation, this parameter
was fitted to the experimental results obtained with
a quasi-monocrystal of the monoclinic ZrO2 [43] at
high temperatures, and the scattering coefficient of
static defects was found using the data at room tem-
perature. The thermal conductivity calculated with
the model in the whole temperature range is in sat-
isfactory agreement with the experimental results up
to about 1100 K (Fig. 3(c)). At higher temperatures,
the experimental values of [43] are higher. The same
tendency was also observed for the pure ZrO2 poly-
crystalline sample of a low porosity (2.37%) [50]. Its
thermal conductivity is a few times higher than the
lowest thermal conductivity limit of ZrO2 calculated
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Fig. 3. Calculated with the parameters presented in Table 1 and
experimental values of the isobaric specific heat (a), of the
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thermal conductivity (c) of ZrO2 (all values are normalised to
100% TD).
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with Eq. (15). This behaviour could be explained by
a supplementary contribution of non-phonon mech-
anisms, e.g. by photons. A more detailed analysis is
needed to explain this effect.

7. Conclusions

In the framework of studies of the thermal and
mechanical properties of oxide IMF, a simplified
model was proposed and some expressions were
deduced for the calculation of heat capacity, ther-
mal expansion, and thermal conductivity of diox-
ides of interest, aiming at the implementing in
mechanistic fuel performance codes. The model is
based on a simplified phonon spectrum, a quasi-
harmonic approximation for the lattice vibrations,
and the Klemens model for thermal conductivity.
The developed model was successfully tested using
the available data for the isobaric specific heat, the
isobaric coefficient of thermal expansion, and the
thermal conductivity of UO2. Then the model was
applied for the calculation of the same properties
of ThO2 and ZrO2. A good agreement has been
obtained over a large temperature region for all
considered parameters of ThO2 and for the isobaric
specific heat and CTE of ZrO2. Some difficulties still
exist in the modelling of the thermal conductivity of
zirconia.

The developed methodology completed by the
similarity principle can be applied for prediction
of thermal properties of other forms of nuclear fuels
and materials for which the data are still unavailable
or incomplete.

Acknowledgement

This work was supported by funds of the MYR-
RHA project of SCKÆCEN and by the FUTURE
project of the EURATOM 5th Framework
Programme.

References

[1] C.B. Basak, A.K. Sengupta, H.S. Kamath, J. Alloys Compd.
360 (2003) 210.

[2] K. Kurosaki, K. Yamada, M. Uno, Sh. Yamanaka, K.
Yamamoto, T. Namekawa, J. Nucl. Mater. 294 (2001) 160.

[3] T. Arima, K. Fukuyo, K. Idemitsu, Y. Inagaki, J. Mol.
Liquids 113 (2004) 67.

[4] C. Kittel, Thermal Physics, Wiley, New York, 1976.
[5] C. Kittel, Introduction to Solid State Physics, 2nd Ed.,

Wiley, New York, 1956.
[6] G.J. Hyland, J. Ralph, High Temp. High Press. 15 (1983)

191.
[7] G. Dolling, R.A. Cowley, A.D.B. Woods, Can. J. Phys. 43

(1965) 1397.



308 V. Sobolev, S. Lemehov / Journal of Nuclear Materials 352 (2006) 300–308
[8] V. Sobolev, J. Nucl. Mater. 344 (2005) 198.
[9] O.L. Anderson, Equation of State of Solids for Geophysics

and Ceramic Science, Oxford University, NY, 1995.
[10] P.G. Klemmens, Theory of the thermal conductivity of

solids, in: R.P. Tye (Ed.), Thermal Conductivity, Academic
Press, NY, 1969, p. 1.

[11] S.E. Lemehov, V. Sobolev, P. Van Uffelen, J. Nucl. Mater.
320 (2003) 66.

[12] G.A. Slack, The Thermal Conductivity of Non-metallic
Crystals, in: H. Ehrehrech, F. Scitz, D. Turnbull (Eds.),
Solid State Physics, vol. 34, Academic Press, New York,
1979.

[13] H.B.G. Casimir, Physica (Utrecht) 5 (1938) 495.
[14] P.G. Klemmens, Thermal Conductivity and Lattice Vibra-

tional Modes, in: H. Ehrehrech, F. Scitz, D. Turnbull (Eds.),
Solid State Physics, vol. 7, Academic Press, New York, 1959.

[15] J.M. Ziman, Electrons and Phonons. The Theory of Trans-
port Phenomena in Solids, Oxford Classics Series, Claren-
don, Oxford, 2001.

[16] G. Leibfried, E. Schlölann, Nachr. Akad. Wiss. Göttingen,
Math.-Physik. K1 2a (1954) 71.

[17] C.L. Julian, Phys. Rev. A 137 (1965) 128.
[18] J.B. Wachtman, M.L. Wheat, H.J. Anderson, J.L. Bates,

J. Nucl. Mater. 16 (1965) 39.
[19] A.C. Momin, M.D. Karkhanavala, High Temp. Sci. 10

(1978) 45.
[20] J.C. Krupa, Z. Gajek, Eur. J. Solid State Inorg. Chem. 28

(1991) 143.
[21] T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, J. Nucl.

Mater. 245 (1997) 72.
[22] Specific Heat-Nonmetalic SolidsY.S. Touloukian, E.H.

Buyco (Eds.), The TRPC Data Series, vol. 5, Plenum, NY,
Washington, 1970.
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